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TECHNICAL PUBLICATION

ON THE CORRELATION BETWEEN MAXIMUM AMPLITUDE

AND SMOOTHED MONTHLY MEAN SUNSPOT NUMBER DURING THE RISE

OF THE CYCLE (FROM t = 0-48 MONTHS PAST SUNSPOT MINIMUM)

1. INTRODUCTION

In the past, conventional onset for the start of a sunspot cycle has corresponded to the time when

smoothed monthly mean sunspot number (i.e., the 12-mo moving average 1, 2) is at a minimum in value

(minimum amplitude). Following this occurrence, smoothed monthly mean sunspot number usually

increases in value in a straightforward way over a period of about 3 to 5 yr (on the basis of the "modern era"

sunspot cycles 10-22) until it reaches a maximum in value (maximum amplitude), its occurrence denoting

the conventional peak of the cycle. In actuality, solar minimum should be regarded as a 2-3 yr interval

when solar activity is relatively low 3, 4 and, likewise, solar maximum as a 3-4 yr interval when solar

activity is relatively high. 5, 6 The conventional onsets and peaks, then, occur sometime during these

extended periods of time.

It is now apparent 7 that 1996 marks the minimum occurrence year for cycle 23 (based on annual

averages of sunspot number) and that cycle 23 is in its rising phase, racing towards maximum, probably in

either 1999 or 2000. While true, placement 8 of its conventional onset (based on smoothed monthly mean

sunspot number) has been difficult to assign, owing to two rather unusual occurrences: First, cycle 23 is the

first cycle to have had its first occurrence of a high-latitude spot group (>25 deg) in conjunction with a

minimum in smoothed monthly mean sunspot number (May 1996). All previous cycles have had their first

occurrence of a high-latitude spot group to precede minimum amplitude by at least 3 mo. 3, 8 Second,

following minimum amplitude, smoothed monthly mean sunspot number almost always rises unabatedly

towards maximum amplitude (having positive first differences), being associated with the transition from

old to new cycle spots and the strengthening of the cycle with longer elapsed time from minimum. For the

modern era cycles 10 and 21, a slight dip is noted to have occurred in the vicinity of their respective

minimum amplitudes (occurring a few to several months after their conventional minimums), where each

dip measured about 10-20 percent larger than their respective conventional minimum amplitudes. For

cycle 23, a secondary dip, measuring only 4 percent larger (8.3 versus 8.0) occurred almost immediately

(in August 1996) following its apparent conventional minimum (May 1996); this secondary dip being

closely associated with the months of lowest monthly mean sunspot number (September and October

1996), which also were the months of greatest number of spotless days, and with the minimum in the 12-

mo rnoving average in number of spot groups (August 1996). Following this secondary dip, smoothed

monthly mean sunspot number (and number of groups) steadily rose, with new cycle spots finally becom-

ing the dominant contributor to sunspot area about April 1997.



Recently,Wilsonetal.9 identifiedseveralstatisticallyimportantassociationsthatrelateto thesizeor
maximumamplitudeof thesunspotcycle.Of particularinteresthereis the"maximum-minimumeffect,"
an inferred associationbetweenthe sizeof thecycle at maximumamplitudeand the sizeof thecycle
atonset(i.e.,minimumamplitude).Wilsonetal. foundthat,onthebasisof thismaximum-minimumeffect,
onecouldusethesizeof thecycleatonsettoestimatethesizeof thecycleatmaximum,typically,to within
_+30percent,whetherone usedall cycles1-22 or just the modernerasunspotcycles 10-22,so named
becauseof thecompletenessof the sunspotrecord(i.e., theyarethemostreliably known).It wasfurther
notedthatcycle 19(the largestcycleonrecord)deviatedthemostwith respectto this inferredassociation.
Excludingcycle 19causedthecoefficientof correlationr to increase from 0.56 to 0.72 for the overall data

set (cycles 1-22) and the standard error of estimate se to decrease from about 35 to 26.

In two other papers, Wilson et al. 8, 10 demonstrated that the existence of the maximum-minimum

effect, when combined with the "Waldmeier effect," an inverse relationship between the size of the cycle at

maximum amplitude and the ascent duration, 9 suggests a means whereby one can determine rather quickly

the apparent rise (i.e.,fast versus slow riser) and amplitude (i.e., large versus small maximum amplitude)

classes of an unfolding sunspot cycle. Cycles that have smoothed monthly mean sunspot number values

equal to or above the mean curve for cycles 1-22 during the early rise phase of the cycle nearly always

( 10 out of 11) turn out to be fast risers (ascent duration <48 mo) of larger than average maximum amplitude

(RM >113.2), while cycles that have smoothed monthly mean sunspot number values below the mean

cycle curve during the early rise phase of the cycle nearly always (10 out of 11) turn out to be slow risers

(ascent duration >48 mo) of smaller than average maximum amplitude (RM <113.2). Furthermore, it was

found that the probable rise and amplitude classes of the unfolding sunspot cycle can usually be deter-

mined within the first 12-16 mo of the cycle. While quite useful, the technique did not yield a specific

estimate of the actual size for the unfolding cycle (i.e., its maximum amplitude), except by comparison to

the means of fast- and slow-rising cycles. 8 On the basis of modern era cycles, fast risers usually have a

maximum amplitude of about 144 + 29, while slow risers usually have a maximum amplitude of about

84 + 17 (i.e., the bulk of the cycles have observed maximum amplitudes that lie within 20 percent of the

means). Consequently, providing that cycle 23 is a well-behaved fast or slow riser, its RM is expected to be

either <173 (fast riser) or <101 (slow riser).

In this paper, on the basis of the modern era sunspot cycles, we examine more closely the predictive

aspects of the current value of smoothed monthly mean sunspot number (i.e., the most recently available

value) with regards to the size of the later occurring maximum amplitude, from cycle onset to 48 mo into

the cycle. We show that the current value of smoothed monthly mean sunspot number during the rise of the

cycle, indeed, can be used with increasing confidence and accuracy to estimate the size of maximum

amplitude for an unfolding sunspot cycle, especially after the first 2 yr of cycle rise, and we apply this

technique to cycle 23.
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2. THE MAXIMUM-MINIMUM EFFECT

Figure 1 displays the scatter plot of maximum amplitude RM versus minimum amplitude Rm, sepa-

rately, for the two cases of all cycles 1-22 (left) and modern era cycles 10-22 (right). In both plots, the

inferred linear regression (denoted as S') is depicted as the thick diagonal line running from lower left to

upper right. Likewise, in both plots, the inferred linear regression (denoted as y') is depicted as the thin

diagonal line running from lower left to upper right for the case when cycle 19 is ignored. Ignoring cycle

19 changes the coefficient of correlation r from 0.56 to 0.72 for cycles 1-22 and from 0.47 to 0.74 for

cycles 10-22; the coefficient of determination r2, a measure of the amount of variance that the inferred

regression can explain, from 0.31 to 0.52 for cycles 1-22 and from 0.22 to 0.54 for cycles 10-22; and the

standard error of estimate se from about 35 to 26 for cycles 1-22 and from about 38 to 24 for cycles 10-22.

Furthermore, ignoring cycle 19 lowered the ),-axis intercept (the first constant in the regression equation)

from about 78.0 to 67.6 for cycles 1-22 and from about 89.8 to 73.3 for cycles 10-22, and it raised the

inferred slope (the second constant in the regression equation) from about 6.0 to 6.9 for cycles 1-22 and

from about 5.2 to 6.7 for cycles 10-22.

Above each scatter plot in figure I is a display of the ratio of observed to predicted maximum ampli-

tude RM (from the regression fits), indicating how well the inferred linear regressions work at predicting

the size of the cycle at cycle onset (for the cases that include cycle 19). For the bulk of the samples, the

observed value of maximum amplitude is found to lie within the range of +30 percent of the predicted

value of maximum amplitude. For the modern era cycles, we find that 10 out of the 13 cycles had a later

occurring maximum amplitude that lie within the +30 percent range of the predicted maximum amplitude,

and although not shown, we note here that, had we chosen to ignore cycle 19, the ratio would have been

12 out of 12 cycles having their later occurring observed maximum amplitudes within the +30 percent

range bounding their predicted maximum amplitudes. (In figure 1, SCN refers to the sunspot cycle

number.)

Because fast risers grow in sunspot number more rapidly than slow risers, there is a natural migration

of fast risers (cycles of shorter than average ascent duration that almost always are larger than average size)

to the right and of slow risers (cycles of average to longer than average ascent duration that almost always

are smaller than average size) to the left in scatter plots of RM versus R(t), where t refers to the elapsed

time from sunspot minimum. Thus, as the elapsed time from sunspot minimum becomes longer, the corre-

lation of RM versus R(t) should strengthen and the standard error of estimate, likewise, should become

smaller, indicating that we should be able to more accurately predict the size of the later occurring maxi-

mum amplitude (as the cycle gets progressively closer and closer to maximum amplitude occurrence).

In the following section, we will examine these particular issues, especially as they apply to cycle 23.
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Figure 1. The "maximum-minimum effect" for cycles 1-22 (left) and cycles 10-22 (right). The ratio

of observed to predicted RM (maximum amplitude) based upon the inferred regressions (top).



3. RESULTS AND DISCUSSION

Figure 2 displays the behavior of the coefficient of correlation r, the standard error of estimate se, the

>,-axis intercept a, and the slope b of the inferred regressions during the interval of elapsed time from

sunspot minimum (i.e., t = 0) through 48 mo. Identified across the bottom are the occurrences of maximum

amplitude for cycles 10-22 (except cycles 12 and 16 which occurred later than 50 mo past minimum,

respectively, at 60 and 56 mo past minimum). Identified across the top are the levels of confidence for the

inferred regressions, where >90 percent indicates a marginally significant result, >95 percent a statistically

significant result, and so forth. Figure 2 suggests that for the modern era cycles (including cycle 19) the

inferred regressions grow stronger as the cycle progresses from minimum to maximum. From 11 mo past

minimum, the regressions are considered statistically important, and from 15 mo past minimum they are

considered very important. The inferred slope changes only slightly beyond t = 24 too, and r is _>0.9 for

t >30 mo. The standard error dips below 25 units of smoothed monthly mean sunspot number for t >24 mo

and below 20 units for t ->28 mo past minimum. Table 1 lists the actual computed values for r, se. a, and b

that are displayed pictorially in figure 2, and it gives the value for the t-statistic regarding the statistical

significance of the inferred regressions, where a sample size of 13 cycles is noted to have 11 degrees of

freedom and results in the _+90-percent level of confidence being t = 1.796, the +95-percent level of confi-

dence level being t = 2.201, and the +99-percent level of confidence being t = 3.106.

Figure 3 depicts the scatter plots of maximum amplitude RM versus R(t) for elapsed time past sun-

spot minimum t = 12, 18, 24, and 30 mo. Clearly, as the cycle progresses towards maximum amplitude, the

inferred correlation between RM and R(t) strengthens and the accuracy of the predicted RM is much

improved, becoming quite good for t >24 too. While true, it should be noted that even early on in the cycle,
when the R(t) value exceeds the median value (the thin vertical line), this can be taken as strongly indicat-

ing that the cycle will have a maximum amplitude larger than average in size, and that when R(t) is below

the median, this can be taken as strongly indicating that the cycle will have a maximum amplitude smaller

than average in size.

Figure 4 compares the ratios of observed to predicted RM for the regressions that are shown in figure

3. For t = 12 mo, 9 of 13 cycles are found to have their later occurring observed RM within the range of

_+30 percent of their predicted values. For t = 18 too, 11 of 13 cycles meet this condition. For t >24 too, all

cycles (13 of 13 cycles) are found to have their observed RM within the range of _+30 percent of their

predicted values, and to within +21 percent for t >30 too.

Table 2 shows the number of cycles out of a sample of 13 cycles (i.e., the modern era cycles) that had

an observed to predicted RM ratio within the various stated bounds for t = 0 to 48 mo. It is apparent that
from about t = 20 mo, the observed RM usually (i.e., 10 or more out of 13 cycles) is found to lie within the

range of +25 percent (or better) of the predicted value.
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Table 1. Summary of linear regression fits for maximum amplitude versus R(t) values

based on sunspot cycle numbers 10-22.

t r se a b t-statistic

0 0.469 37.9 89.771 5.243 1.76

1 0.463 38.0 90.133 4.889 1.73

2 0.465 38.0 88.883 4.581 1.74

3 0.487 37.5 84,134 4.760 1.85

4 0.526 36.5 77,039 5.252 2.05

5 0.498 37.2 78.265 4.634 1.91

6 0.457 38.2 82.684 3.738 1.71

7 0.480 37.6 79.676 3.600 1.81

8 0.512 36.9 74.112 3.635 1.98

9 0.525 36.5 70.509 3.478 2.05

10 0.524 36.5 69.310 3.151 2.04

11 0.559 35.6 64.791 3.062 2.24

12 0.590 34.6 59.355 2.982 2.42

13 0.617 33.8 55.623 2.804 2.60

14 0.671 31.8 50.303 2.717 3.00

15 0.705 30.4 45.703 2.576 3.30

16 0.721 29.7 43.173 2.354 3.45

17 0.741 28.8 42.283 2.126 3.66

18 0.769 27.4 40.361 1.970 3.99

19 0.799 25.8 37.977 1.859 4.40

20 0.816 24.8 35.860 1.757 4.68

21 0.827 24A 35.199 1.615 4.88

22 0.835 23.6 36.506 1.457 5.04

23 0.835 23.6 38.340 1.315 5.04

24 0.846 22.9 38.108 1.231 5.26

25 0.863 21.7 35.921 1.194 5.67

26 0.872 21.0 36.024 1.135 5.90

27 0.878 20.5 37.301 1.070 6.08

28 0.886 19.9 35.937 1.049 6.34

29 0.896 19.1 33.849 1.046 6.70

30 0.906 18.2 33.319 1.018 7.10

31 0.915 17.3 31.870 0.997 7.52

32 0.924 16.4 30.602 0.973 8.02

33 0.938 14.9 29.334 0.955 8.98

34 0.950 13.4 26.935 0.954 10.09

35 0.959 12.2 24.475 0.953 11.23

36 0.967 10.9 24.118 0.932 12.59

37 0.971 10.3 24.251 0.910 13.47

38 0.972 10.1 23.332 0.899 13.72

39 0.973 9.9 21.100 0.904 13.99

40 0.977 9.2 18.438 0.915 15.20

41 0.982 8.1 16.204 0.916 17.24

42 0_989 6.3 13.302 0.931 22.17

43 0.994 4.7 11.399 0.946 30.14

44 0.995 4.3 10.524 0.956 33.05

45 0.994 4.7 9.591 0.971 30.15

46 0.991 5.7 9.704 0.975 24.57

47 0.989 6.3 10.150 0.974 22.17

48 0.988 6.6 7.871 1.000 21.21
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Table 2. Distribution of ratios as a function of t for sunspot cycle numbers 10-22 (N-13).

Rangesof Ratio (Obs. RM/Pred. RM)

0.50-1.50 0.60-1.40 0.70-1.30 0.75-1.25 0.80-1.20 0.85-1.15 0.90-1.10 0.95-1.05

0
1
2
3
4

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

24
25
26
27

28
29
30
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32
33
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35
36
37
38
39
40
41
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44
45
46
47
48

12
12
12
12
12
12
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Figure 5 displays estimates of cycle 23's RM using two different onsets: May 1996 (the lower, heavier

line) and August 1996 (the higher, thinner line). Accepting May 1996 as the official onset for cycle 23

strongly suggests that its RM will be about the size of the mean cycle. Estimates for RM have become

progressively smaller with time for t = 0-17 mo, decreasing from about 131.7 + 39.5 (at t = 0, with R(0) =

8.0) to 110.3 i 33.1 (at t = 17, with R(17) -- 32.0). On the other hand, accepting August 1996 as the official

onset for cycle 23 strongly suggests that its RM will be larger than the size of the mean cycle. Estimates for

RM have remained fairly stable (although there is a hint of an upward progression since about February

1997, t = 6 mo) with time for t = 0-14 mo, being about 133.3 + 40.0 (at t = 0, with R(0) = 8.3) to 137.2 +

41.2 (at t = 14, with R(14) = 32.0). Thus, a divergence in prediction has become apparent, which strictly

relates to the choice of onset date.

Previously, on the basis of various models and precursor techniques, it has been found that cycle 23

should be above average in size. For example, Kopecky 11 and Wilson, 12 on the basis of the "odd-even

effect," have suggested that cycle 23 should have a maximum amplitude that will be larger than average in

size, probably of comparable or larger size as compared to that of cycle 22's (RM = 158.5). Similar find-

ings have continued to be echoed. 8, 13-20 In fact, a consensus prediction 21 of about 160 + 30 remains the

best guess for the size of cycle 23's RM. Improvements in this estimate should be available later this year,

using curve-fitting algorithms (such as the one described by Hathaway et al.22).

Because the consensus is that cycle 23 will turn out to be a fast-rising, larger than average size cycle,

in contrast to a slow-rising, smaller than average size cycle, this seems to suggest that the choice of May

1996 as the official onset for cycle 23 is wrong and will lead to the specious result that its RM will be only

of about average size (i.e., the mean cycle) or, perhaps, even smaller. On the other hand, the choice of

August 1996 as the official start for cycle 23 generates a prediction that is in much better agreement with

the consensus prediction. Therefore, we suggest that for the purposes of solar activity prediction, the sec-

ondary minimum of August 1996 be used as the official (preliminary) start of cycle 23.

In conclusion, this study has demonstrated that the current value of smoothed monthly mean sunspot

number during the rise from sunspot minimum to maximum can be used to provide a reasonably accurate

estimation for the size of the later occurring maximum amplitude from a few to several years in advance of

its occurrence, being particularly useful from about 18 mo past sunspot minimum. For cycle 23, the official

start, while controversial, appears to yield estimates of RM closer to the consensus prediction when one

accepts August 1996 as the official start for cycle 23, rather than May 1996. The current estimate for cycle

23's RM based on the described method and using August 1996 as the official start and the most recently

available smoothed monthly mean sunspot number value of 32.0 (October 1997, t = 14 mo) as the indepen-

dent variable is that it will be larger than average in size, measuring about 137.2 + 41.2. Because there is a

hint of a rising estimate with the progression of time, it may be that our estimate will become slightly larger

over the next several months. This may be an indication that the actual value of RM for cycle 23 will be in

the upper portion of the prediction interval. (i.e., >137.2).
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